

Product Datasheet

ESS Module

- Optimized for grid and power supply integration
- Modular 19" rack-mountable design
- Precision laser-welded connections
- Built-in voltage and temperature monitoring
- CAN bus communication interface
- High dielectric strength for enhanced safety
- Advanced thermal management for optimal cooling

ELECTRICAL SPECIFICATIONS

Part number	20-00001031 - M35W-144-0063	22-00001377 - M35W-144-P063	M35W-144-0071	M35W-130-0104
Rated Voltage V_R	144 V	144 V	130 V	130 V
Surge Voltage V_S ¹	148.8 V	148.8 V	134.4 V	134.4 V
Rated Capacitance C ²	63 F	63 F	71 F	104 F
Capacitance Tolerance ³	0% / +20%			
ESR ²	12 mΩ	9.0 mΩ	12.5 mΩ	14 mΩ
Leakage Current I_L ⁴	<30 mA			
Constant Current ($\Delta T = 15^\circ C$) ⁵ passive cooling	79 A	91 A	78 A	72 A
Constant Current ($\Delta T = 15^\circ C$) ⁵ active cooling 60CFM	177 A	205 A	174 A	152 A
Max Current I_{Max} ⁶	2.6 kA	2.9 kA	2.7 kA	2.7 kA
Short Current I_S ⁷	12 kA	16 kA	12 kA	9.2 kA
Stored Energy E ⁸	180 Wh		205 Wh	243 Wh
Energy Density E_d ⁹	5.6 Wh/kg	5.6 Wh/kg	6.3 Wh/kg	7.3 Wh/kg
Usable Power Density P_d ¹⁰	6.8 kW/kg	8.9 kW/kg	6.4 kW/kg	4.5 kW/kg
Impedance Match Power Density P_{dMax} ¹¹	13.5 kW/kg	17.8 kW/kg	13.0 kW/kg	9.1 kW/kg

THERMAL CHARACTERISTICS

Type	M35W-144-0063	M35W-144-P063	M35W-144-0071	M35W-130-0104
Working Temperature	-40 ~ 65°C			
Storage Temperature ¹²	-40 ~ 70°C			
Thermal Resistance R_{Th} ¹³ passive cooling	0.2°C/W			
Thermal Resistance R_{Th} ¹³ active cooling 60 CFM	0.04°C/W			
Thermal Capacitance C_{Th} ¹⁴	36 kJ/°C			

LIFETIME CHARACTERISTICS

Type	M35W-144-0063	M35W-144-P063	M35W-144-0071	M35W-130-0104
DC Life at High Temperature ¹⁵	1500 hours			
DC Life at RT ¹⁶	10 years			
Cycle Life ¹⁷	1'000'000 cycles			
Shelf Life ¹⁸	4 years			

SAFETY & ENVIRONMENTAL SPECIFICATIONS

Type	M35W-144-0063	M35W-144-P063	M35W-144-0071	M35W-130-0104
Safety	RoHS, REACH			
Vibration	Seismic Standard IEC 60068-3-3 Zone 3			
Rated insulation voltage (maximum series voltage)	1500 VDC			

MONITORING AND CELL VOLTAGE MANAGEMENT (CMS)

Type	M35W-144-0063	M35W-144-P063	M35W-144-0071	M35W-130-0104
Connector		Phoenix MCV1.5/8-GF-3.81		
Auxiliary power supply		24V \pm 10% 5W		
Cell Voltage Monitoring and Management ¹⁹		Microprocessor based, individual cell balancing		
Temperature Sensor		4x NTC (10kOhm @25°C)		
Communication interface		CAN bus 2.0A		

PHYSICAL PARAMETERS

Type	M35W-144-0063	M35W-144-P063	M35W-144-0071	M35W-130-0104
Mass M, typical	32 kg	32.5 kg	33 kg	
Power Terminals ²⁰		M8		
Dimensions ²¹ L x W x H		555 x 483 x 150 mm (19" 4U)		

NOTES:

1. Surge voltage V_S : Absolute maximum voltage, non-repetitive. The duration must not exceed 1 second.
2. Capacitance C: The test current is 0.075 A/F, if the calculated current is >100A, then apply 100A.

3. Capacitance tolerance: Typical tolerance is $\pm 5\% \sim \pm 10\%$.
4. Leakage current measurement procedure:
 - 1) Charge the module to V_R .
 - 2) Hold the voltage at V_R for 72h.
 - 3) The current to maintain V_R after 72 h is the leakage current. Leakage current may be greater if balancing is activated.
5. Max constant working current: $I_{MCC} = \sqrt{\Delta T / (ESR * R_{Th})}$
6. Max current: $I_{Max} = 0.5C * V_R / (\Delta t + ESR * C)$, discharge from V_R to $V_R/2$ in 1 second.
7. Short current: $I_5 = V_R / ESR$
8. Stored energy: $E = 0.5C * V^2 / 3600$
9. Energy density: $E_d = E / M$
10. Usable power density: $P_d = 0.125V_R^2 / (ESR * M)$
11. Impedance match power density: $P_{dMax} = 0.25V_R^2 / (ESR * m)$
12. Storage temperature: Storage in discharge state.
13. Thermal resistance: $R_{Th} = \Delta T / P$, where $P = ESR * I^2$
14. Thermal capacitance is indicated for the whole module.
15. DC life at high temperature: Hold the capacitor charged at rated voltage at 65°C for 1500h. The capacitance shall be >80% of the rated value, the ESR shall be <200% of the rated value.

16. DC life at RT: Hold the capacitor charged at rated voltage at room temperature RT, the capacitance shall be >80% of the rated value, the ESR shall be <200% of the rated value.
17. Cycle life: Charge and discharged the capacitor in the range between V_R and $V_R/2$. 5 seconds waiting period between charge and discharge.
18. Shelf life: Discharged and no load applied at RT.
19. See detailed CMS datasheet and user manual.
20. The maximum torque is 15Nm for M8.
21. 19" rack module with a height of 4U

Notes:

Standard markings:

- Name of manufacturer, part number, serial number
- Rated voltage and capacitance, negative and positive terminals, warning marking
- Stored energy in watt-hours

The contents of this document are subject to change without notice. SECH accepts no liability for the accuracy or credibility of the values and information contained in this document.