

Product Datasheet

60mm Ø Ultracapacitors – threaded type

- Rated voltage 3VDC
- 3200F capacitance
- Ultra-low ESR,
- High cycle life of 1 million cycles
- Excellent DC life performance
- Threaded terminals M12
- Very high energy and power density

ELECTRICAL SPECIFICATIONS

Type	C60T-3R0-3200
Rated Voltage V_R	3.00 V
Surge Voltage V_S^1	3.10 V
Rated Capacitance C^2	3200 F
Capacitance Tolerance ³	-0% / +20%
ESR ² (DC)	<0.23 mΩ
ESR ² (AC, 1 kHz)	<0.2 mΩ
Leakage Current I_L^4	<12 mA
Self-discharge Rate ⁵	<20%
Constant Current ($\Delta T = 15^\circ C$) ⁶	145 A
Max Current I_{Max}^7	2.9 kA
Short Current I_S^8	13 kA
Stored Energy E^9	4 Wh
Energy Density E_d^{10}	7.84 Wh/kg
Usable Power Density P_d^{11}	9.2 kW/kg
Matched Impedance Power Density P_{dMax}^{12} , 10 Hz ESR	19.2 kW/kg
Matched Impedance Power Density P_{dMax}^{12} , 1 kHz ESR	22.1 kW/kg

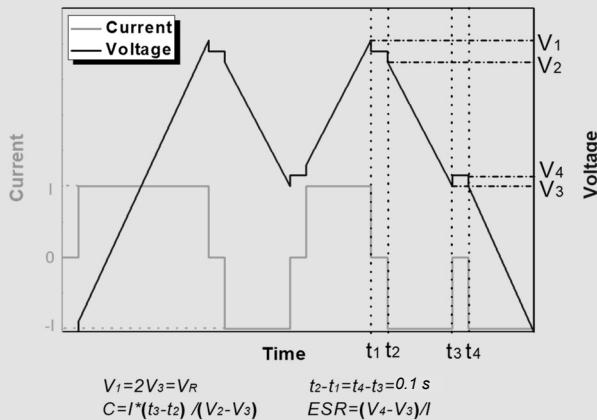
THERMAL CHARACTERISTICS

Type	C60T-3R0-3200
Working Temperature	-40 ~ 65°C
Storage Temperature ¹³	-40 ~ 70°C
Thermal Resistance R_{Th}^{14}	3.1 K/W
Thermal Capacitance C_{Th}^{15}	580 J/K

LIFETIME CHARACTERISTICS

Type	C60T-3R0-3200
DC Life at High Temperature ¹⁶	1500 hours
DC Life at RT ¹⁷	10 years
Cycle Life ¹⁸	1'000'000 cycles
Shelf Life ¹⁹	4 years

SAFETY & ENVIRONMENTAL SPECIFICATIONS

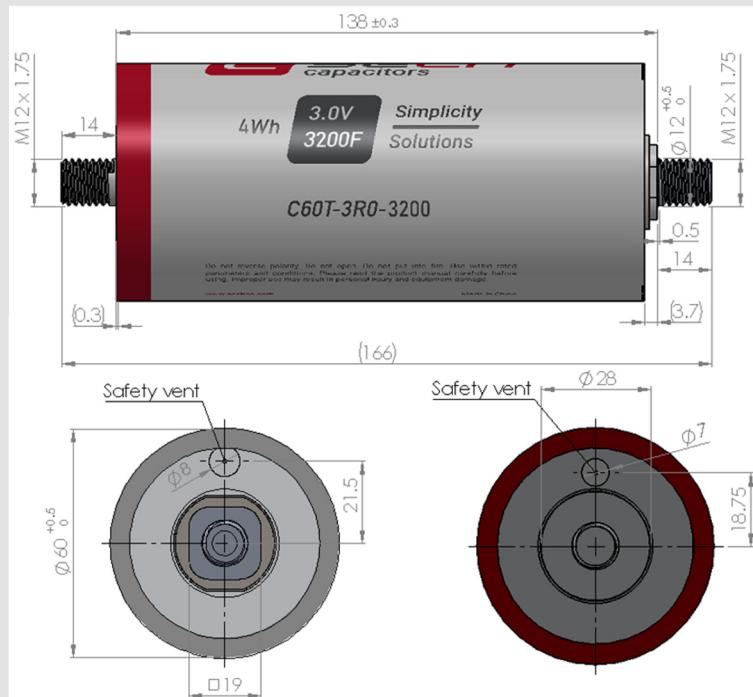

Type	C60T-3R0-3200
Safety	RoHS, REACH and UL810
Vibration	ISO 16750-3 Table 12
Shock	IEC 60068-2-27 18x 100g 6ms

PHYSICAL PARAMETERS

Type	C60T-3R0-3200
Mass M	510 g
Terminals	Threaded ²¹
Dimensions ²⁰ Height L	138 mm
Diameter	60 mm

NOTES:

- Surge voltage V_S : Absolut maximum voltage, non-repetitive. The duration must not exceed 1 second.
- Capacitance C: The test current is 0.075 A/F, if the calculated current is >100A, then apply 100A.


- Capacitance tolerance: Typical tolerance is $\pm 5\% \sim \pm 10\%$.
- Leakage current measurement procedure: 1) Charge the capacitor to the V_R with a constant current (0.075 A/F, if the calculated current is >100A, then apply 100A). 2) Hold the voltage at V_R for 72h. 3) The current to maintain V_R after 72 h is the leakage current.
- Self-discharge rate measurement procedure: 1) Charge the capacitor to V_R with a constant current (0.075 A/F, if the calculated current >100A, then apply 100A). 2) Hold the voltage at V_R for 3h. 3) Floating for 72h. 4) Measure the voltage after 72 h.
- Max constant working current: $I_{MCC} = \sqrt{\Delta T / (ESR * R_{Th})}$
- Max current: $I_{Max} = 0.5C * V_R / (\Delta t + ESR * C)$, discharge from V_R to $V_R/2$ in 1 second.
- Short current: $I_5 = V_R / ESR$
- Stored energy: $E = 0.5C * V^2 / 3600$
- Energy density: $E_d = E / M$
- Usable power density: $P_d = (0.12V_R^2 / ESR) / M$
- Matched impedance power density: $P_{dMax} = (0.25V_R^2 / ESR) / M$
- Storage temperature: Storage in discharge state at RT.
- Thermal resistance: $R_{Th} = \Delta T / P$, where $P = ESR * I^2$
- Thermal capacitance is indicated for the whole product.
- DC life at high temperature: Hold the capacitor charged at rated voltage at $65^\circ C$ for 1500h. The capacitance shall be >80% of the rated value, the ESR shall be <200% of the rated value.

17. DC life at RT: Hold the capacitor charged at rated voltage at room temperature RT, the capacitance shall be >80% of the rated value, the ESR shall be <200% of the rated value.

18. Cycle life: Charge and discharged the capacitor in the range between V_R and $V_R/2$. 5 seconds waiting period between charge and discharge. The constant test current is 0.075 A/F (if the calculated current >100A, then apply 100A).

19. Shelf life: Discharged and no load applied at RT.

20. Dimensions:

21. The maximum torque for threaded terminal is 12 Nm.

Standard markings:

- + Name of manufacturer, part number, serial number
- + Rated voltage and capacitance, negative and positive terminals, warning marking
- + Stored energy in watt-hours

Mounting recommendations:

- + Mounting without applying undue mechanical stress on the terminals
- + Provide adequate spacing in between cells to secure required insulation strength
- + Provide clearance around the safety vent and do not position anything above the safety vent that may be damaged in an event of vent rupture

The contents of this document are subject to change without notice. SECH accepts no liability for the accuracy or credibility of the values and information contained in this document.