

# Product Datasheet

## 33mm Ø Ultracapacitors

- Rated voltage 3VDC
- 310F capacitance
- Highest power density based on ultra-low ESR
- High cycle life of 1 million cycles
- Hermetically sealed cell
- Most ruggedized cell based on all laser welded design
- Radial terminals for PCB mounting



### ELECTRICAL SPECIFICATIONS

| Type                                                        | C33S-3R0-0310 |
|-------------------------------------------------------------|---------------|
| Rated Voltage $V_R$                                         | 3.00 V        |
| Surge Voltage $V_S^1$                                       | 3.10 V        |
| Rated Capacitance $C^2$                                     | 310 F         |
| Capacitance Tolerance <sup>3</sup>                          | 0% / +30%     |
| ESR <sup>2</sup> (DC, 10 Hz)                                | <1.6 mΩ       |
| ESR <sup>2</sup> (AC, 1 kHz)                                | <1.2 mΩ       |
| Leakage Current, typical $IL^4$                             | <1.2 mA       |
| Self-discharge Rate, typical <sup>5</sup>                   | <20%          |
| Constant Current ( $\Delta T = 15^\circ C$ ) <sup>6</sup>   | 29 A          |
| Max Current $I_{Max}^7$                                     | 311 A         |
| Short Current $I_S^8$                                       | 1.875 kA      |
| Stored Energy $E^9$                                         | 0.39 Wh       |
| Energy Density $E_d^{10}$                                   | 6.15 Wh/kg    |
| Usable Power Density $P_d^{11}$                             | 10.71 kW/kg   |
| Matched Impedance Power Density $P_{dMax}^{12}$ , 10 Hz ESR | 22.3 kW/kg    |
| Matched Impedance Power Density $P_{dMax}^{12}$ , 1 kHz ESR | 29.8 kW/kg    |

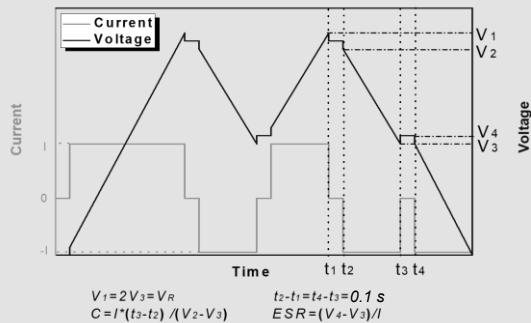
### THERMAL CHARACTERISTICS

| Type                              | C33S-3R0-0310 |
|-----------------------------------|---------------|
| Working Temperature               | -40 ~ 65°C    |
| Storage Temperature <sup>13</sup> | -40 ~ 55°C    |
| Thermal Resistance $R_{Th}^{14}$  | 10.9 K/W      |
| Thermal Capacitance $C_{Th}^{15}$ | 60 J/K        |

### LIFETIME CHARACTERISTICS

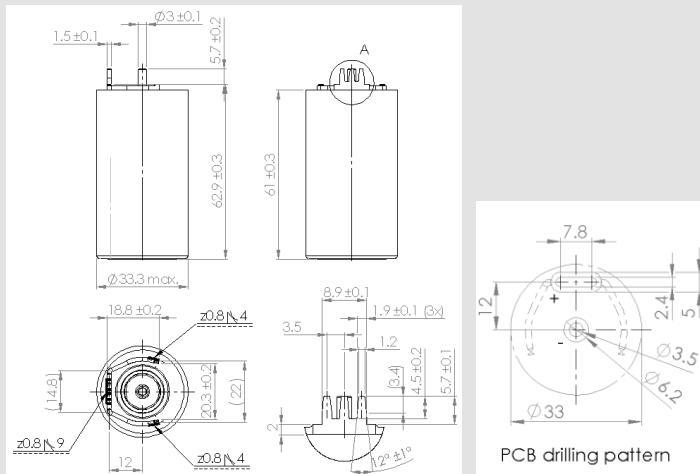
| Type                                                   | C33S-3R0-0310    |
|--------------------------------------------------------|------------------|
| DC Life at High Temperature, 3V and 65°C <sup>16</sup> | 1000 hours       |
| DC Life at RT <sup>17</sup>                            | 10 years         |
| Cycle Life <sup>18</sup>                               | 1'000'000 cycles |
| Shelf Life <sup>19</sup>                               | 4 years          |

### SAFETY & ENVIRONMENTAL SPECIFICATIONS


| Type      | C33S-3R0-0310                              |
|-----------|--------------------------------------------|
| Safety    | RoHS, REACH and UL810A                     |
| Vibration | IEC 60068-2-64 Category 1 (table A.5/ A.6) |
| Shock     | IEC 60068-2-27, 100g 6ms                   |

## PHYSICAL PARAMETERS

| Type                            | C33S-3R0-0310            |
|---------------------------------|--------------------------|
| Mass, typical M                 | 63 g                     |
| Terminals (leads)               | Solderable <sup>21</sup> |
| Dimensions <sup>20</sup> Height | 68.8 mm                  |
| Diameter                        | 33 mm                    |


**NOTES:**

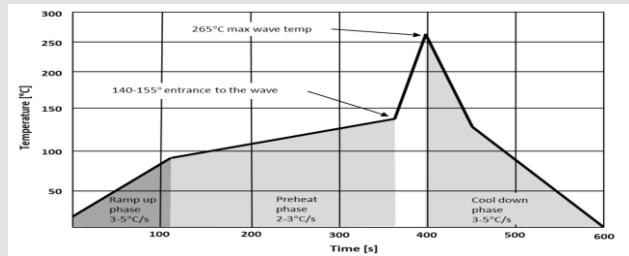
- Surge voltage  $V_S$ : Absolute maximum voltage, non-repetitive. The duration must not exceed 1 second.
- Capacitance C: The test current is 0.1 A/F, if the calculated current is  $>100\text{A}$ , then apply 100A.
- Dimensions, potential indication, recommended PCB drilling pattern:



3. Capacitance tolerance: Initially  $+10\% \sim +30\%$ .
4. Leakage current measurement procedure: 1) Charge the capacitor to the  $V_R$  with a constant current (0.1 A/F, if the calculated current is  $>100A$ , then apply 100A). 2) Hold the voltage at  $V_R$  for 72h. 3) The current to maintain  $V_R$  after 72 h is the leakage current.
5. Self-discharge rate measurement procedure: 1) Charge the capacitor to  $V_R$  with a constant current (0.1 A/F, if the calculated current  $>100A$ , then apply 100A). 2) Hold the voltage at  $V_R$  for 8h. 3) Floating for 72h. 4) Measure the voltage after 72 h.
6. Max constant working current:  $I_{MCC} = \sqrt{\Delta T / (ESR * R_{Th})}$
7. Max current:  $I_{Max} = 0.5C * V_R / (\Delta t + ESR * C)$ , discharge from  $V_R$  to  $V_R/2$  in 1 second.
8. Short current:  $I_5 = V_R / ESR$
9. Stored energy:  $E = 0.5C * V^2 / 3600$
10. Energy density:  $E_d = E / M$
11. Usable power density:  $P_d = (0.12V_R^2 / ESR) / M$
12. Matched impedance power density:  $P_{dMax} = (0.25V_R^2 / ESR) / M$
13. Storage temperature: Storage in discharge state
14. Thermal resistance:  $R_{Th} = \Delta T / P$ , where  $P = ESR * I^2$
15. Thermal capacitance: For the whole capacitor
16. DC life at high temperature: Hold the capacitor charged at specified voltage and temperature. The capacitance shall be  $>80\%$  of the rated value, the ESR shall be  $<200\%$  of the rated value.
17. DC life at RT: Hold the capacitor charged at rated voltage at room temperature RT, the capacitance shall be  $>80\%$  of the rated value, the ESR shall be  $<200\%$  of the rated value.
18. Cycle life: Charge and discharged the capacitor in the range between  $V_R$  and  $V_R/2$ . 5 seconds waiting period between charge and discharge. The constant test current is 0.1 A/F (if the calculated current  $>100A$ , then apply 100A).
19. Shelf life: Discharged and no load applied at RT

The contents of this document are subject to change without notice.  
SECH accepts no liability for the accuracy or credibility of the values and  
information contained in this document.




### Standard markings:

- + Name of manufacturer, part number, serial number
- + Rated voltage and capacitance, positive terminals, warning markings
- + Stored energy in watt-hours

#### Mounting recommendations:

- + Mounting without applying undue mechanical stress on the terminals
- + Provide adequate spacing in between cells to secure required insulation strength
- + Provide clearance around the safety vent and do not position anything next to the safety vent that may be damaged in an event of vent rupture

21. Recommended wave soldering profile for printed circuit assembly with use of lead-free alloy:



Total soldering process time from room temperature to peak temperature 265°C and cool down is 10 minutes max. The time to reach the required temperatures depends on the design of the application and on the power of pre-heating section of the soldering machine. All temperatures are measured on the cell leads on top of the PCB. Recommended thickness for PCB = 2.4 to 3.2 mm. Conformal coating is recommended.

Solder: Lead-free (Sn96.5/Ag 3.0/Cu0.5) liquidus point 217°C  
 Recommended Flux: Kester 979T  
 Ramp Up Rate: 3°-5° C/sec. Max  
 Preheat: 140° to 155° C 2°-3° C/sec on top of board  
 Temperature entrance into wave: 140° to 155° C on top of board  
 Ramp to peak temp: 200°C/sec  
 Peak Temp: 265°C for 1.5 to 5 sec. Max  
 Cool Down Rate: 3°C-5°C /sec. Max  
 Conveyor Speed: 40-50 cm/min