

Product Datasheet

174V 6.2F module

- Rated voltage 174VDC
- 6.2F capacitance
- Resistive cell balancing
- Compact and light weight package
- Based on 360F hermetically sealed cells
- PCB push-in connections

ELECTRICAL SPECIFICATIONS

Type	M14S-174-0006
Rated Voltage V_R	174.00 V
Surge Voltage V_S^1	179.80 V
Rated Capacitance C^2	6.2 F
Capacitance Tolerance ³	0% / +20%
DC ESR ²	<120 mΩ
Leakage Current I_L^4	<31 mA
Constant Current ($\Delta T = 15^\circ C$) ⁶	11 A
Max Current I_{Max}^7	309 A
Short Current I_S^8	1.5 kA
Stored Energy E^9	26 Wh
Energy Density E_d^{10}	4.9 Wh/kg
Usable Power Density P_d^{11}	6.0 kW/kg
Impedance Match Power Density P_{dMax}^{12}	12.0 kW/kg

THERMAL CHARACTERISTICS

Type	M14S-174-0006
Working Temperature	-40 ~ 65°C
Storage Temperature ¹³	-40 ~ 70°C
Thermal Resistance R_{Th}^{14}	1°C/W
Thermal Capacitance C_{Th}^{15}	5'000 J/°C

LIFETIME CHARACTERISTICS

Type	M14S-174-0006
DC Life at High Temperature ¹⁶	1500 hours
DC Life at RT ¹⁷	10 years
Cycle Life ¹⁸	1'000'000 cycles
Shelf Life ¹⁹	4 years

SAFETY & ENVIRONMENTAL SPECIFICATIONS

Type	M14S-174-0006
Safety	RoHS, REACH
Vibration	IEC60068-2-6
Shock	IEC60068-2-28, 29
Environmental Protection	IP44

MONITORING AND CELL VOLTAGE MANAGEMENT

Type

Cell Voltage Management

M14S-174-0006

Passive balancing

PHYSICAL PARAMETERS

Type

Mass M

Terminals²⁰

Dimensions²¹ Length

Width

Height

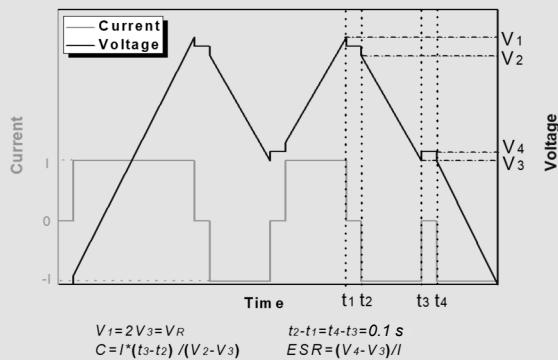
Module Fixation Holes²¹

M14S-174-0006

5.3 kg

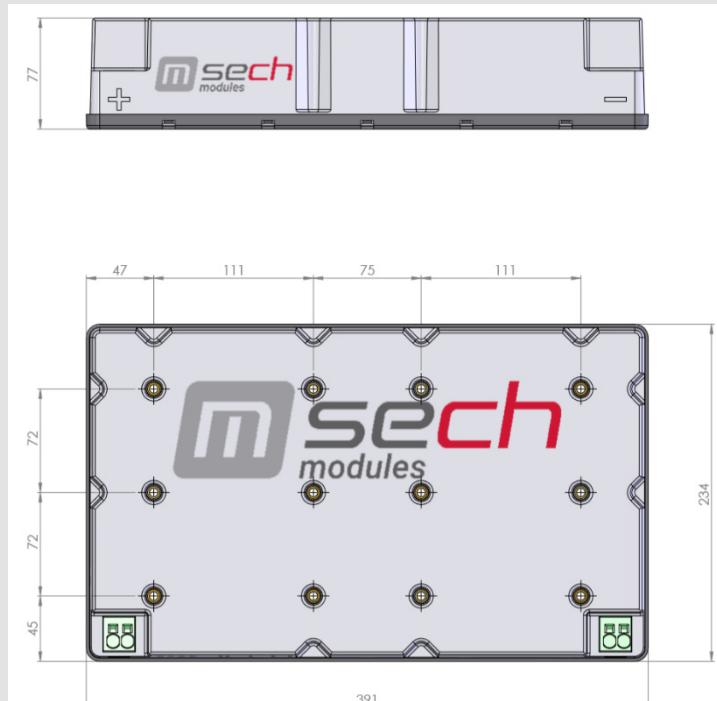
PCB push-in connections, 0.75 – 16mm²

391 mm


234 mm

77 mm

12 x Ø6mm x 24mm


NOTES:

1. Surge voltage V_S : Absolute maximum voltage, non-repetitive. The duration must not exceed 1 second.
2. Capacitance C: The test current is 0.075 A/F, if the calculated current is >100A, then apply 100A.

3. Capacitance tolerance: Typical tolerance is +5%~+10%.
4. Leakage current measurement procedure: 1) Charge the capacitor to the V_R with a constant current (0.075 A/F, if the calculated current is >100A, then apply 100A). 2) Hold the voltage at V_R for 72h. 3) The current to maintain V_R after 72 h is the leakage current.
5. Self-discharge rate measurement procedure: 1) Charge the capacitor to V_R with a constant current (0.075 A/F, if the calculated current >100A, then apply 100A). 2) Hold the voltage at V_R for 3h. 3) Floating for 72h. 4) Measure the voltage after 72 h.
6. Max constant working current: $I_{MCC} = \sqrt{\Delta T / (ESR * R_{Th})}$
7. Max current: $I_{Max} = 0.5C * V_R / (\Delta t + ESR * C)$, discharge from V_R to $V_R / 2$ in 1 second.
8. Short current: $I_5 = V_R / ESR$
9. Stored energy: $E = 0.5C * V^2 / 3600$
10. Energy density: $E_d = E / M$
11. Usable power density: $P_d = 0.125V_R^2 / (ESR * M)$
12. Impedance match power density: $P_{dMax} = 0.25V_R^2 / (ESR * m)$
13. Storage temperature: Storage in discharge state.
14. Thermal resistance: $R_{Th} = \Delta T / P$, where $P=ESR * I^2$
15. Thermal capacitance is indicated for the whole module.
16. DC life at high temperature: Hold the module charged at rated voltage at 65°C for 1500h. The capacitance shall be >80% of the rated value, the ESR shall be <200% of the rated value.
17. DC life at RT: Hold the module charged at rated voltage at room temperature RT, the capacitance shall be >80% of the rated value, the ESR shall be <200% of the rated value.

18. Cycle life: Charge and discharged the module in the range between V_R and $V_R / 2$. 5 seconds waiting period between charge and discharge. The constant test current is 0.075 A/F (if the calculated current >100A, then apply 100A).
19. Shelf life: Discharged and no load applied at RT.
20. Phoenix Contact PCB terminal block – SPT 16/2-V-10.0-ZB - 1735875
21. Dimensions and position of fixation holes: See below drawing

Notes:

Standard markings:

- Name of manufacturer, part number, serial number
- Rated voltage and capacitance, negative and positive terminals, warning marking
- Stored energy in watt-hours

The contents of this document are subject to change without notice. SECH accepts no liability for the accuracy or credibility of the values and information contained in this document.